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Variational Finite-Element Solution for Dissi-.
pative Waveguides and Transportation

Application
ALASTAIR D. McAULAY, MEMBER, IEEE

Abstract—A procedure is developed for determining the complex

propagation constants and associated complex electromagnetic fields as

a function of frequency for electromagnetic waves propagating along an
inhomogeneous waveguide composed of dissipative materials and having

a complicated shape. The wave equation, which is complex because of
the presence of dissipative materials, is transformed for computer
solution into a matrix eigenvalue equation by the application of the
Rayleigh-Ritz variational method in conjunction with the finite-element

method. The results are reviewed for several simple dissipative wave-
guides for which anal ytical results are computed for comparison. A
novel proposal is then investigated in which a railroad track acts as a
surface waveguide for a rapid-transit collision-avoidance system. The
results illustrate the usefulness of the numerical method developed and

suggest that the modified steering rail warrants further investigation for

rapid-transit systems.

I. INTRODUCTION

T
HE PROPAGATION of electromagnetic waves is

investigated along waveguides composed of dissipative

materials and having a complicated shape. In particular, the

complex propagation constants and their associated com-

plex electric and magnetic fields are computed as a function

of frequency for the lower order modes. Previously, such

dissipative waveguides were analyzable analytically only in

the case of low-order modes, simple shapes, and involving

materials having either very low dissipation, such as a

dissipative dielectric rod [1], or very high conductivity,

such as a conducting wire [2].

Earlier numerical methods [3]–[10] enabled the analysis

of waveguides having complicated shapes and containing

inhomogeneous materials, but were restricted to Iossless

materials. Many waveguides possess low levels of attenua-

tion and the effect of dissipation may be calculated accur-

ately from the Iossless fields by perturbation methods [1].

However, the Iossless waveguide techniques are inadequate

where loss is significant, or where a surface wave propagates

only because of the presence of dissipation, such as in a
conducting wire [2] or Zenneck’s surface wave [1 1].

The effect of dissipative materials can be reduced to con-

version of the electromagnetic wave equation into a complex

wave equation. The Rayleigh–Ritz variational method in

conjunction with the finite-element method is applied for

the first time to the complex wave equation. The object of

the analysis is to convert these equations into a matrix
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eigenvalue equation suitable for computer solution, The

procedure developed differs from the lossless case: first, it

is necessary to find a real functional for minimization, and,

second, the complex matrix eigenvalue equation must be

solved for real eigenvalues and complex eigenvectors,

Assuming a specified phase velocity, the complex prop-

agation constants and their associated complex fields may

then be determined for the possible modes of propagation

along a waveguide. Solving the problem for different phase ,

velocities enables the solutions to be obtained as a function

of frequency. The author has obtained an identical result

[13], [14] by applying the method of weighted residuals

[12] in place of the Rayleigh-Ritz method.

The numerical method was verified by applying it to

waveguides for which some analytical solutions were avail-

able for comparison [13], [14]. A brief summary of these

results is presented. The method was then applied to in-

vestigate a novel technique, proposed by the author, for

use in headway control in track-guided transportation

systems [15]. The problem of controlling the spacing of

rapid-transit vehicles in a safe manner is one of considerable

interest to the Department of Transportation [16].

II. DERIVATION OF EQUATIONS

The wave is assumed to propagate in the positive z-

direction in a time-harmonic manner, and there is no other

z-dependence because a waveguide is being considered.

Then

& = Re [@(7z-~t) ] x = Re [@(YZ-~~)] ~~)

where the propagation constant y = ~ + ju, the angular

frequency co is real and the components of the vectors E

and H are functions of the coordinates transverse to the

direction of propagation along the guide. Substituting (1)
into the source-free wave equations produces the z-com-

ponent transverse-harmonic wave equations

(V2 + k’ – y2)Ez = O (V2 + k’ – y’)llfz = O (2)

where V’ is now the two-dimensional Laplacian operator

and the intrinsic propagation constant is
—

Maxwell’s equations may be used to obtain the tangential

components of E and H from the z components; therefore,

only the equations involving the z components need to be

solved.
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The presence of conductivity a may be included as an Equation (6) has the form

additional imaginary part of. the material permittivity
DD=o (8)

8 = d + jd’, e“ = G/co. (4)

The intrinsic propagation constant k in (3) is now complex
where the linear differential operator

and, consequently, in general y, E=, and Hz of (2) are also L = V21 -t 0)2M (9)
complex.

The transverse-harmonic wave equation andl Maxwell’s

equations may be written in nondimensional form [13] by

defining a fixed length a which is normally a suitable dimen-

sion in the problem. V, k, and y are multiplied by a to

produce nondimensional quantities; p and & are replaced

by the quantities relative to a vacuum p, and e,; E, and Hz

are similarly divided by arbitrary reference fielcls; and o is

multiplied by a/c to obtain the nondimension nal m. The

variables are assumed to be nondimensional for the re-

mainder of this paper unless otherwise specifiecl.

The finite-element method and its applications are well

documented in structural engineering [17], elasticity [18],

fluid mechanics, heat, and mass transfer [12]1. The sub-

domain principle is utilized in which the domain of the

equation to be solved is divided into separate regions or

subdomains. In the case of the transverse electromagnetic

wave equation, the domain is the area of cross-section of the

waveguide. Triangular subdomains are chosen for con-

venience. The unknown solution functions in (2) are now

approximated in each subdomain by the sum of a set of

polynomials [19], and a basis transformation [13] is

applied to produce

where the @~(x,y) are selected as linear functions of x and y,

having a value in only one triangle and unity value at only

one node of the triangle, ai are the unknown values of the

electric field E= at the n triangle nodes in the cross section,

and bi are the unknown values of the magnetic field Hz at

. .

acts on the function @(x, y) and is defined in the surface

region Q. The boundary conditions, Dirichlet, Neumann,

or mixed may be written similarly

where ai is the known function along the ith segment ri of

the boundary r, and li is a linear operator corresponding to

the ith segment.

In the case of lossless waveguides, the corresponding

operator L is self-adjoint, and it can be proved that a

variation formula is

F = <@,L@). (11)

However, in this case because losses are present, the oper-

ator of (9) is not self-adjoint. This is shown by substituting

(7) into (9) and establishing that

(u,Lv) # (I@} (12)

where u and v are arbitrary vectors of suitable dimension.

The variational formula for a non self-adjoint operator is

F = (@”,L@) (13)

where @a is the adjoint variable of@ [12]. The integral over

the area is used as the inner product for the case of the

transverse wave equations. Equation (13) is shown to be a

variational formula for the operator of (9) by considering

a perturbation

[
F + dF = (@a + &Da)L(@ + &D) dS. (14)

.C
these nodes.

-..

The ai and bi are to be determined so that (5) is in some Equation (13) is subtracted, second-order ~ms are

way the best approximation to the solution of (2). For a neglected, and the Laplacian is expanded using integration

first-order polynomial approximation, each of the k tri- by Parts twice

angles has three nodes; therefore, n = 3k. A, first-order

polynomial is selected in order to fit more easily into com- c5F =
J

S@”L@ dS +
J

60 V2Z@a dS

plicated boundary shapes. Other methods are available for s s

boundaries of known curvature [20].

The Rayleigh-Ritz variational method requires a real

functional for the purpose of extremization. One method of

forming a suitable functional is to split the complex wave

equations (2) into real and imaginary parts. Using (3),

defining m = p,ev – (y/co)2, and using single- and double-

prime superscripts for the real and imaginary parts of the

variables, respectively, produces

V2Z@ + C02MQ = O (6)

where Z is the identity matrix and

[1 [
E; m’ —m” 00

@= ~ M = :“ ~’ 0, 0,,
-- r?l1.(7)

H: O 0 ;“ m’

$+ (@a VZcXD – (XDVZW) d~
r

+ C02J&DMT@” dS. (15)
s

This may be written

6F = (d@aL@) + <&DL”@a) + B(@”,&D) (16)

where the last term contains the contour integral boundary
terms and where the identity was used (L adjoint) =

(L transpose) or L“ = LT for real L.
The functional equation (13) is variational if and only if

the variation resulting from a perturbation of the variables

13F = O. (17)
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Consequently, from (16) it can be seen that (17) is satisfied

if LO = O, which is the original (8), and

L“@” = o (18)

which is the adjoint of this equation and in addition the

boundary term

B(@a,a@) = o. (19)

Equation (19) requires that Dirichlet, Neumann, or mixed

boundary conditions are satisfied. The variational formula

in the case of the wave equations (6) is now written using(13)

F=
J

W V21@ dS +
J

co2WM@ dS. (20)
s s

Equation (20) is expanded using Green’s theorem because

the Laplacian of a linear function (5) vanishes, which is not

a realistic approximation to the Laplacian of the actual field

J $

ma @ dx
F=– V@a. V@dS+ “

s z an

+
J

ro2@”A4@ dS. (21)
s

Maxwell’s equations, in normalized form and split into real

and imaginary parts, are used to express the derivatives

which are discontinuous at the interface between different

media, &D/&z, in terms of continuous derivatives i?@/dz

(22)

where

am
—.

a~

and

aEz’/aT

H
00 - Q’ Q’”

aE:/aT

aHz’/aT
P= ;, _:,, –$’ –:’ (23)

ai7:/aT”
~!,

R’ o 0,

Q’ =

Q“ =

~f =

R“ =

(y/rO)’&/ + (y/cD)”&;

Ierlz
(Y/~)”%’ – (Y/@Y%”

Isrlz

(Y/~YA’ + (Y/@)”A”

1/%12

(YIUY’L’ – (YIU)’L”

1/%12

Hence, (21) may be written

+ JW2(D”MD dS,
s

(24a)

(24b)

(25)

The Rayleigh–Ritz procedure is followed. Approximation

functions are substituted for the functions @ and 0“ in the

functional equation (25), which is then extremized by
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differentiation with respect to the unknown coefficients.

The approximation functions are obtained by splitting (5)

into real and imaginary parts, and further approximation

functions are defined for the adjoint variables; for example,

Eta=
z ,$1q’aq+(x,y). (26)

The summation limits are assumed to be i = 1 to n for the

remainder of this paper, unless otherwise stated.

The first term of (25) becomes

J
FI = – [(Xai’” V#i)(Xai’ V~i)

s

+ (Xa~ Vq$)(Xa/ Volt)

+ (Xbi’a V#~)(Xbi’ Vdi)

+ (Xbfl V#i)(Xb~ V@i)] dS. (27)

Differentiation with respect to the coefficients ai’,a~,bi’,b~,

a~”,a~a,bi’”,b~, and defining a matrix

sji = J V~j . V~i dS (28)
s

which may be precomputed for a given triangle shape [21],

produces

where

In a similar manner, the second term of (25) becomes

Ef~l=[pTi(p:jJTl[;al ‘3’)
after differentiating with respect to the coefficients and

defining a matrix

(32)

which may be precomputed [22].

Similarly, the third term of (25), using (7), becomes

Ei’El =‘2[Ti’ (J)’] [;al ’33)
after differentiating with respect to the coefficients and

defining another precomputable matrix [21]

tji = J@j@idS. (34)
s

The combination of the three differentiated terms (29),

(31), and (33), corresponding to the three terms in (25), are

set to zero in order to extremize the variational functional F

- w(%%1[:1+u’ W:,irl[3
[
iwtji o

. — 0.)2 1[1o (Mtji)~:“ “ (35)
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The lower matrix equation of (35) is the adjoint of the

upper equation, and consequently has the same eigenvalues

and adjoint eigenvectors. Thus only one equation need be

solved

[Sj~z – ‘W’’jJX = @2MtjiX. (36)

A matrix eigenvalue equation for a cross section contain-

ing k triangles may be constructed using (36), because the

approximation function (5) for each triangle is zero in all

other triangles. S, W, T,a’,a’’,b’,b” are used for the matrices

where previously only the matrix elements were used and

the subscripts now refer to the matrix or vector triangle

number.
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magnetic-field values of b’ and b“ are set to zero. Con-

sequently, some rows and their corresponding columns are

omitted.

In the cases that the resulting eigenvalues 02 are real,

they provide the frequencies of possible modes of propaga-

tion and the eigenvectors determine the complex electric

and magnetic fields at the triangle nodes in the cross section.

The matrices involving Q’ W couple the real parts of the

electric and magnetic field and are zero for TM and TE

modes, and nonzero only for hybrid modes. The matrices

involving double-prime quantities are zero when there are

no dissipative materials present. The matrices involving

-sl< I ~ -Q1’,W / Q1”W,
‘.

‘. I o I ‘\ ‘\

~\
+ : I :’Q; w ~ “’Q{W

._____ –-––_–_; _– _______ :-––––________+ –––– __
I

s, I -Q1:W ~ -Q1’~>
o ‘<

~. I ‘. ‘\I
‘b

-#k / :’Q/ W; :Q; w

_——-— ——— ——— —— L__–––-L_–––– L-–+ _–____––-+_-–-– ––––.

R1’~ -Rl”w I
‘., ‘., Sk,,

%% I 0~.=
Rk’ W / – Rk” W /

~.
‘+ I

-- —-—-—.- ——-- ;–--–-–––-––– –;––-–––-– ––-––~–--–-– ––––-– -
R1”W ~ R1’W.‘% 1 1 St,,

‘.
‘. 1 ‘.

‘.,
o I ‘.

R/W/ ‘~tkw:
‘.

1
Sk

--——-——----—— ~–-––.. ________ f______ i ——-

al
).

ak’
.—-

al”

ak”
---

bl’

.—.

0

.—-.-. ————

ml”T1
I
I ml’T1

I

‘. ‘,\ I
*. I ‘.< o 0

=.
m~”T~ ~ /.m~’T~ ,

_____________ ~____ ..________ +--- ___-------: ____________,
I

I I ml’T1, I —ml”T1

o 1 0
‘< ‘.

I ‘. 1

‘~tl :;{TlI
——-_—-— ————-- :_––-._ -----__ -~–________!_Tk ~

~ ml ’’TIN< ~ ml ’T1’N,

o 0
I I ‘.

‘. ‘>
‘.

I m~”T~ ~ m; ~

= 0)2

Theaand bvectors in(37)form avectoroflength3 x 4 x k

representing the unknown complex electric- and magnetic-

field values at each vertex of the k triangles. When the

triangles are brought together, many of these unknowns

refer tothe same points and must therefore be equal, This

continuity condition is accomplished by initially assigning

numbers to each node of the cross section rather than each

vertex of each triangle. The submatrices in (37) are then
entered into the correct positions of the final matrix directly.

At external-boundary node points, where E= = O or

there are lines of symmetry for the tangential e[ectric field,

the appropriate electric-field values of a’ and a“ are set to

zero. Similarly, where Hz = O, or there are lines of sym-

metry for the tangential magnetic field, the appropriate

Q“ W are nonzero only for hybrid modes in the presence of

dissipative materials.

The result obtained is shown in [13] to be identical to

that obtained by means of the method of weighted residuals

[12], [14]. -

III, NUMERICAL PROCEDURE

The waveguide cross section is divided into triangular

regions at whose vertices the complex electric and magnetic

fields are determined. Consequentl~, a finer net is selected

where one of these four functions is expected to vary

rapidly. If too few triangles are used, or if they are positioned

621’

.
ak’
-——

al”

ak”
-——

bl’

b;

_——
~1,,

bjl

t (37)
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badly, or truncation of the surface wave decaying to in-

finity is too great, the eigenvalues will be less accurate.

A program for the solution of the general matrix eigen-

value equation Ax = ~Bx called the QZ algorithm [23]

was used to compute the complex eigenvalues J and com-

plex eigenvectors x. The frequencies were determined from

W2 = J, when A was real.

The smallest positive eigenvalue for an arbitrary selection

of u/co and ~/co is generally complex because the matrix is

unsymmetrical. However, the frequency was assumed to

be real, and it is therefore necessary to iterate on a/co or

~/co until the imaginary part of co becomes negligible [13].

Similarly, the imaginary part of the dielectric, which de-

pends on O, will need to be iterated until e,” = a,/co for a

medium of relative conductivity cr,.

The numerical process involves discretization of a con-

tinuous field. Consequently, spurious modes are generated

which are not realizable physical modes. In addition, some

modes are lost, such as the higher order modes, whose field

variations can no longer be adequately represented by a

limited number of triangles. Neither of these features pre-

sent a problem because the lowest order modes are the ones

of interest and it was found that these are easily distin-

guished from the spurious modes which exhibit obvious

nonphysical characteristics [13].

The variation of the electromagnetic field with time is

provided by the fact that the electric and magnetic field are

complex. For example, the electric field at a node, E =
a + bj produces

&(t) = Re [(a + bj)ejot]

=acoscot-b sin cot

= ~az + b’ cos (cot + tan-’ (b/a)). (38)

Hence, at cot = O, f(t) = a; at cot= rc/2, ~(t) = –b; and

at mt = –tan– 1 (b/a), d(t) = ~az + bz. The knowledge

of the field variation with time enables damped transverse-

wave motion to be detected.

IV. VERIFICATION EXAMPLES

In order to verify the accuracy of the previously men-

tioned numerical procedure, several relatively simple wave-

guide structures were investigated for which some analytical

results may be calculated for comparison [1], [2], [24],

[25]. These results are described in detail in [14]; conse-

quently, only a brief review is presented here. As suc-

cessively more complex guides were considered, more

submatrices in (37) became nonzero.

The complex propagation constants and fields were de-

termined as a function of frequency for a hollow circular

waveguide filled with dissipative material in order to verify

the iteration process for finding real frequencies. Typically,

errors of less than 1 percent were obtained for specified

propagation constants,, a TIWO ~ mode, and a 15 triangle

approximation [14].

Hybrid modes may propagate along a dielectric rod and

the fields decay to infinity transversely. The TMO ~, TEO ~,

and HE I ~ mode propagation constants showed close agree-

ment between the numerical and analytical computations

[12] for a wide range of frequencies [14]. The numerical

method was also shown to be capable of providing good

results for a dielectric-coated conductor [14], [24].

A rod having both dielectric and conductive properties

was investigated. Analytical methods enable solutions to be

obtained for the lowest order modes and limited frequency

ranges when the losses are small (perturbation methods)

[1] or when the conductivity is high [2], [25]. In contrast,

the numerical method developed here can handle all in-

between cases. The numerical results show that, as the con-

ductivity is increased, surface-wave propagation as a result

of the dissipative surface phenomena increases while that

due to internal reflection from side to side in the dielectric

becomes less significant [14]. Both conducting rods in

which the diameter is much less than the skin depth [2] and

in which the diameter is much greater than the skin depth

[25] were considered. In the latter case, surface-wave

propagation is entirely due to the dissipative property on

one side of the surface interface. In the former case, because

of the internal reflection phenomena, the surface wave

decays more rapidly in the transverse direction and differs

more substantially from a plane wave. Good agreement

was obtained between the numerical and analytical tech-

niques even though the field decays to 1/e of the surface

value in millionths of a meter inside the conductor and

meters outside the conductor [14].

V. APPLICATION TO RAILROAD TRACK

A. Approach

A method is proposed in which the track, used for steer-

ing a rapid-transit vehicle, is adapted for use as a surface

waveguide [15]. Signals transmitted ahead of a vehicle are

steered by the track and reflected from obstacles or vehicles

ahead. In order to evaluate this proposal, the complex

propagation constant for the lowest order mode and the

associated electromagnetic fields are computed for a given

track structure. The railroad rail was selected because it is

the most common form of track guiding system and is still

popular on new systems, such as the BART system in San

Francisco and the subway in Washington, DC.

The surface wave is required to cling fairly closely to the

rail in order not to strike objects alongside the track. Con-

sequently, it was decided to modify the rail by the addition
of a strip of dielectric material, as in Fig. 1. The surface

wave is enhanced because the wave is partially trapped

inside the dielectric by repeated internal reflection as the

wave propagates. The lowest order mode which propagates

is similar to the HE I ~ mode on a rod, the arrangement

being similar to a dielectric image line.

A similar approach is possible for most track guiding

systems because there is generally a steel guideway even

when rubber-tired vehicles are used.

The complex propagation constant for the HE I ~ mode

is computed to determine the phase distortion and attenua-

tion, and the complex fields are determined for possible use
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TABLE I
GROUND MATERIAL PROPERTIES

l– ..--+ I

JiiL
1!
\_/

RAlL~~u3 DIELECTRIC (W POLYSTYRENE)

~1%’J1

GROUNO~~u2

Fig. 1, Rail augmented with strip of Dielectric material resting on
ground.

in antenna and reflector designs. The results, including those

for a water saturated track, indicate that the method pro-

posed warrants further investigation in the search for a

more economic and efficient headway control and collision

avoidance system.

B. Model

The surface waveguide characteristics of a rail modified

by a dielectric strip are influenced by the properties of the

four regions present: the rail, the dielectric strip, the air,

and the ground.

The dielectric material chosen should have a high value

of relative permittivity, a small loss tangent, and a low

price. A commonly available material, polystyrene, was

used for the analysis, There may be other mcme suitable

materials which would produce better results. The poly-

styrene properties assumed were relative permittivity e. =

2.56 and loss tangent tan d = 0.00033 in the range of

frequencies considered [26]. .

The rail properties assumed were conductivity o =

0.6 x 108 mho/m, relative permittivity 8, = 1, and relative

permeability p, = 10, the latter value being estimated from

values at lower frequencies. It was expected that the loss in

the rail would be small relative to the loss in the ground and

the dielectric because of the high rail conductivity; there-

fore, initially this loss was neglected. A perturbation method

was used later, and it was found that the loss due to the

rail was less than 2 percent of that due to the ground and

the dielectric together [13].

The properties of the materials directly beneath the rail

are harder to determine. Normally, the rails rest on wooden

sleepers and these rest on a ballast material made of gravel.

The part of the wave below the rail is partially reflected by

the sleepers.

The problem of periodic discontinuities is discussed by

Hu [27] and is also relevant to the effect of gaps in non-

welded rails. The reflections caused by repetitive discon-
tinuities is shown to have a compounded effect and is not

just linearly additive. It was decided that a suiti~ble model,

expected to give the worst case results, would be to consider

the rail resting directly on the ground. Electrical properties

at 3 x 109 Hz for different ground materials are shown in

Table I [26]: the sandy-dry and distilled-water cases were

Er TAN IS
, ,

SANOYORY I 2,5 j 0.0062

considered in order to illustrate the procedure and to

observe the effect of a large variation in the values of the

parameters.

The air was considered to have a relative permittivity

e, = 1, a relative permeability PF = 1, and zero conduc-

tivity. The effect of fog and rain are not significant in the

range of frequencies considered [28].

Symmetry of the field about a vertical plane along the

center of the rail was assumed; consequently, only half the

rail cross-section is considered. In practice, the dielectric

might be placed on one side of the rail and the results would

be slightly different. The manner in which the half cross-

section is subdivided into triangles is shown in Fig. 2. The

radial extent of the triangles was chosen so that a sufficient

part of the field would be in the air and available for

coupling with the vehicle and at the same time’ the field

would not be extended too far into the 10SSYground. A

smaller and larger triangle spread were used for higher and

lower frequencies, respectively. A triangle spread selected

for a given frequency will result in increasingly truncated

field representation as the frequency is lowered and in-

creasingly poor triangle utilization as the frequency is raised.

C. Results

The numerical method was applied to the augmented rail

model and the results obtained for the normalized phase

constant versus normalized frequency are shown in Fig. 3.

Examination of the HE I ~-type field patterns for three

layouts showed that a particular layout is only valid over a

small range of frequencies. The true curve is expected to lie

between the curves shown. The group velocity dm/dfl, which

determines the phase distortion of the signal, is seen to be

approximately constant over the range of frequencies con-

sidered. Consequently, phase distortion is expected to be

minimal at these frequencies.

The normalized attenuation constant divided by normal-

ized frequency versus normalized frequency, Fig. 4, is

extrapolated from the three dotted curves and agrees with

the predicted behavior. At very high frequencies, the wave

withdraws into the dielectric material and approaches a

plane wave with a ratio of normalized propagation constant

to normalized frequency of y/co = 1.6 + jO.000264. At the
lower frequencies, the wave spreads farther from the rail,

which simplifies coupling with the vehicle, but causes an

increase in attenuation because more of the field enters the

ground.

The normalized attenuation constant was determined for

a configuration in which the ground is considered lossless
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Fig. 3. Phase constant versus frequency for an augmented rail.

(curve 4 of Fig. 4) in order to determine the apportionment

of the attenuation between that caused by dissipation in the

dielectric and that caused by dissipation in the ground. The

attenuation caused by dissipation in the dielectric decreases

as the frequency is lowered. At normalized frequencies

below o = 0.68, the loss caused by the ground becomes

dominant, while above this frequency the dielectric loss

becomes significant.

Figs. 5 and 6 show, superimposed on the cross section of

a rail, the real part of the z component of the electric and

magnetic fields at a frequency 1.246 GHz (co = 0.659) near

the center of the range considered. The imaginary part of

the electric and magnetic fields represent the electric and

magnetic fields at a time cot = Tc/2 later than the real part

and are similar in appearance, having a smaller magnitude

because the attenuation involved is small. A ratio of

normalized propagation constant to normalized frequency

of y/co = j3/o + jt/oJ = 1,145 + jO.000306 was used. At

this ratio of propagation constant to frequency the imag-

inary part of the eigenvalue is small (0.000054) relative to the

value when either a/oJ or /3/ro are changed only slightly. The

field patterns are seen to be similar to those for an HE I ~

model on a lossy dielectric rod [14]. The field extends into
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h

1. NORMAL LAYOUT

2. CONTRACTED LAYOUT
‘\ ,,0-

. . 3 3. EXPANDED LAYOUT

‘%.-b-”””” 4. ONLY DIELECTRIC L033Yj

0.0010
(GROUNO L033LES31

\

ah

0,0005 -

/
.

//” _.=--j7——,/ 0.000264

0.0 I I I I
0.5 0.6 0.7 0.8

u

Fig. 4. Attenuation constant divided by frequency versus frequency
for an augmented rail.

the ground and the transverse distan~ from the surface of

the dielectric to the point where the z component of the

electric field has decayed to 1/e of the value at the surface,

is about 0.67 in. The z component of the magnetic field in

the direction of propagation has a maximum value along the

beveled edge of the dielectric. The transverse magnetic and

electric fields are obtainable from Maxwell’s equations

h,=–$V,hz– J~&t?
~~(.x ‘teZ)

(39)
c c

and

e, = – $ Vtez +‘~ (d= x V,hz) (40)
c c

where ht and et are the transverse components of the mag-

netic and electric fields, h= and e= are the z components of

the magnetic and electric fields, kc is the transverse prop-

agation constant, P is the phase constant, e and p are the

permittivity and the permeability, and d= is the unit vector

in the z direction. For the HE I ~ mode on a stripline, con-

sisting of a semicircular dielectric rod attached to a con-

ducting plane, in the dielectric the transverse magnetic field

is approximately parallel to the plane and the transverse
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electric field isapproximately normalto the plane. Applica-

tion of (39) and (40) to Figs. 5 and 6 indicates that the
transverse-field patterns follow an approximately similar

shape to the previous case, if the rail contours and dielectric

shape are allowed for.

Figs. 7 and 8 show, superimposed on the cross section of

a rail, the real parts of the z component of the electric and

magnetic fields for a frequency 0.94 GHz (co = O.5) near

the low end of the range of frequencies considered. A ratio

of propagation constant to frequency of y/0 = B/w +

ja/co = 1.07 + jO.00147 was used to produce these figures.

At this ratio of propagation constant to frequency, the

imaginary part of the eigenvalue co2 is small relative to the

values when either cx/co or /l/co are changed only slightly.

The field is seen to spread much further from the rail, but is

otherwise similar to the higher frequency field previously
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Fig.8. Real pmtofmagnetic field foranaugmented rail at O.94GHz.

considered. The transverse distance from the surface of the 0.000302. The reason may be explained by observing that,

dielectric to the point where the z component of the electric in Fig. 9, the field is largely expelled from the ground. The

field has decayed to I/e of the value at ,the surface is about phase constant remains unchanged.

2,67 in as compared to 0.67 in for the midfrequency.

Figs. 9 and 10 show the field in the case where the rail is VI. CONCLUSION

resting on rain water. The ratio of normalized attenuation A numerical procedure was developed, using the

to normalized frequency is u/co = ‘0.00014 for f?/o = 1.14, Rayleigh–Ritz variational and finite-element methods, for

which is less than the case for dry sandy soil, u/co = determining the complex propagation constants and com-
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plex electromagnetic tields for the lowest order modes for

electromagnetic waves propagating along a closed or surface
waveguide, A review was presented of the results obtained

in verifying this method. A railroad rail modified by the

addition of a strip of dielectric material was then investi-

gatedas a waveguide, assuming typical rnateri alproperties

for the rail, ground, dielectric, and air. It was shown that
waves of approximately 1.3 GHz may be expected to

propagate a distance of 155 m before falling to I/e of their

amplitude at the transmitter. Water saturating the track
was shown to have only a minor effect. The z component

of the electric and magnetic fields was plotted for two fre-

quencies and for both dry and water-saturated ground. The

field patterns show the nature of the surface wave obtained

and enable the future construction of efficient antennas for
coupling into the waveguide.
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The results of analyzing the railroad track as a lossy

waveguide illustrate the usefulness of the numerical method

developed. In addition, the proposal to use the track as a

waveguide was shown to warrant further investigation as a

viable alternative for collision avoidance or headway con-

trol in future rapid-transit systems.
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Aperture Coupling Between Microstrip and
Resonant Cavities

DAVID S. JAMES, MEMBER, IEEE, GUY R. PAINCHAUD, MEMBER, IEEE, AND WOLFGANG J. R. HOEFER,

MEMBER, IEEE

Abstract—This paper presents a simple analysis for the coupling
between microstrip and a cavity through an aperture located in the
substrate ground plane. The analysis is based on Wheeler’s equivalent-
energy concept for small-hole coupling and an approximate parallel-plate
waveguide model for the microstrip. The theory appears adequate for
most design purposes, and has been used snccessfrrlly in the design of

stabilizing cavities for experimental 12-GHz low-noise FET oscillators.

L INTRODUCTION

T HE PURPOSE of this paper is to present an analysis

and experimental data on the performance of a novel

m~crostrip-to-cavity transition, so that high Q cavities can
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be made compatible with existing MIC techniques. Previous

authors [1 ]-[5] have described empirically designed

microstrip and stripline-to-waveguide transitions; how-

ever, with the exception of [4], none of these papers describe

coupling to a resonant cavity.

The transition studied is shown in Fig. 1. The ground
plane of the microstrip substrate forms one of the cavity

end plates. In particular, we have investigated coupling to

cylindrical cavities resonating in the TEO ~. mode. Coupling

is by means of an aperture located in the ground plane at

the point of maximum radial H-field in the cavity. The
microstrip line terminates in an open circuit 3,1&4 beyond

the aperture. This length of line maximizes the coupling

through the aperture [6]–[8]. This configuration is quite

practical, as the cavity can be machined into the substrate

holder.

Unfilled cavities can readily yield values of unloaded

Q(Qo) of at least 25000. This value is much greater than
that of both planar resonators (Q. < 500) [9] and “open”


