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Variational Finite-Element Solution for Dissi-
pative Waveguides and Transportation
Application

ALASTAIR D. McAULAY, MEMBER, IEEE

Abstract—A procedure is developed for determining the complex
propagation constants and associated complex electromagnetic fields as
a function of frequency for electromagnetic waves propagating along an
inhomogeneous waveguide composed of dissipative materials and having
a complicated shape. The wave equation, which is complex because of
the presence of dissipative materials, is transformed for computer
solution into a maftrix eigenvalue equation by the application of the
Rayleigh-Ritz variational method in conjunction with the finite-element
method. The results are reviewed for several simple dissipative wave-
guides for which analytical results are computed for comparison. A
novel proposal is then investigated in which a railroad track acts as a
surface waveguide for a rapid-transit collision-avoidance system. The
results illustrate the usefulness of the numerical method developed and
suggest that the modified steering7 rail warrants farther investigation for
rapid-transit systems.

I. INTRODUCTION

HE PROPAGATION of electromagnetic waves is

investigated along waveguides composed of dissipative
materials and having a complicated shape. In particular, the
complex propagation constants and their associated com-
plex electric and magnetic fields are computed as a function
of frequency for the lower order modes. Previously, such
dissipative waveguides were analyzable analytically only in
the case of low-order modes, simple shapes, and involving
materials having either very low dissipation, such as a
dissipative dielectric rod [1], or very high conductivity,
such as a conducting wire [2].

Earlier numerical methods [3]-[10] enabled the analysis
of waveguides having complicated shapes and containing
inhomogeneous materials, but were restricted to lossless
materials. Many waveguides possess low levels of attenua-
tion and the effect of dissipation may be calculated accur-
ately from the lossless fields by perturbation methods [1].
However, the lossless waveguide techniques are inadequate
where loss is significant, or where a surface wave propagates
only because of the presence of dissipation, such as in a
conducting wire [2] or Zenneck’s surface wave [11].

The effect of dissipative materials can be reduced to con-
version of the electromagnetic wave equation into a complex
wave equation. The Rayleigh-Ritz variational method in
conjunction with the finite-element method is applied for
the first time to the complex wave equation. The object of
the analysis is to convert these equations into a matrix
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eigenvalue equation suitable for computer solution. The
procedure developed differs from the lossless case: first, it
is necessary to find a real functional for minimization, and,
second, the complex matrix eigenvalue equation must be
solved for real eigenvalues and complex eigenvectors.
Assuming a specified phase velocity, the complex prop-
agation constants and their associated complex fields may
then be determined for the possible modes of propagation
along a waveguide. Solving the problem for different phase
velocities enables the solutions to be obtained as a function
of frequency. The author has obtained an identical result
[13], [14] by applying the method of weighted residuals
[12] in place of the Rayleigh-Ritz method.

The numerical method was verified by applying it to
waveguides for which some analytical solutions were avail-
able for comparison [13], [14]. A brief summary of these
results is presented. The method was then applied to in-
vestigate a novel technique, proposed by the author, for
use in headway control in track-guided transportation
systems [15]. The problem of controlling the spacing of
rapid-transit vehicles in a safe manner is one of considerable
interest to the Department of Transportation [16].

II. DERIVATION OF EQUATIONS

The wave is assumed to propagate in the positive z-
direction in a time-harmonic manner, and there is no other
z-dependence because a waveguide is being considered.
Then

- & = Re [E/0*79] o = Re [He/*7*9] (1)

where the propagation constant y = f + ju, the angular
frequency o is real and the components of the vectors E
and H are functions of the coordinates transverse to the
direction of propagation along the guide. Substituting (1)
into the source-free wave equations produces the z-com-
ponent transverse-harmonic wave equations

(VP4 k> —9DE, =0 (V2 4+ Kk —p)H, =0 (2

where V2 is now the two-dimensional Laplacian operator
and the intrinsic propagation constant is

k = oV ue. 3)

Maxwell’s equations may be used to obtain the tangential
components of E and H from the z components; therefore,
only the equations involving the z components need to be
solved.
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The presence of conductivity ¢ may be included as an
additional imaginary part of  the material permittivity
= o/w. 4)
The intrinsic propagation constant k in (3) is now complex
and, consequently, in general y, E,, and H, of (2) are also
complex.

The transverse-harmonic wave equation and Maxwell’s
equations may be written in nondimensional form [13] by
defining a fixed length a which is normally a suitable dimen-
sion in the problem. V, k, and 9 are multiplied by a to
produce nondimensional quantities; x4 and ¢ are replaced
by the quantities relative to a vacuum y, and ¢,; E, and H,
are similarly divided by arbitrary reference fields; and w is
multiplied by a/c to obtain the nondimensional w. The
variables are assumed to be nondimensional for the re-
mainder of this paper unless otherwise specified.

The finite-element method and its applications are well
documented in structural engineering [17], elasticity [18],
fluid mechanics, heat, and mass transfer [12]. The sub-
domain principle is utilized in which the domain of the
equation to be solved is divided into separate regions or
subdomains. In the case of the transverse electromagnetic
wave equation, the domain is the area of cross-section of the
waveguide. Triangular subdomains are chosen for con-
venjence. The unknown solution functions in (2) are now
approximated in each subdomain by the sum of a set of
polynomials [19], and a basis transformation [13] is
applied to produce

1

e =g + j&, £

n

=Y agt)) Ho= % boxn) O

where the ¢,(x,y) are selected as linear functions of x and y,
having a value in only one triangle and unity value at only
one node of the triangle, a; are the unknown values of the
electric field E, at the » triangle nodes in the cross section,
and b; are the unknown values of the magnetic field H, at
these nodes.

The aq; and b; are to be determined so that (5) is in some
way the best approximation to the solution of (2). For a
first-order polynomial approximation, each of the k tri-
angles has three nodes; therefore, n = 3k. A first-order
polynomial is selected in order to fit more easily into com-
plicated boundary shapes. Other methods are available for
boundaries of known curvature [20].

The Rayleigh~Ritz variational method requires a real
functional for the purpose of extremization. One method of
forming a suitable functional is to split the complex wave
equations (2) into real and imaginary parts. Using (3),
defining m = pe, — (y/w)?, and using single- and double-
prime superscripts for the real and imaginary parts of the
variables, respectively, produces

VI® + o*M® =0 (6)
where I is the identity matrix and ,

E/ m —m’ 0 0
Ez” _ mr/ ml 0 0

(I) = Hzl M - 0 0 m/ — nl// (7)
Hz” 0 0 m// ml

383

Eqﬁation (6) has the form
L® =0 (8) -

where the linear differential operator
L = VI + o*M ‘ )]

acts on the function ®(x,y) and is defined in the surface
region Q. The boundary conditions, Dirichlet, Neumann,
or mixed may be written similarly

li(plri = “i(x,y) (10)

where «; is the known function along the ith segment r; of
the boundary r, and /; is a linear operator corresponding to
the ith segment.

In the case of lossless waveguides, the corresponding
operator L is self-adjoint, and it can be proved that a
variation formula is

F = (®,LD). (11)

However, in this case because losses are present, the oper-
ator of (9) is not self-adjoint. This is shown by substituting
(7) into (9) and establishing that

{u,Lvy # {v,Lu) (12)

where u and v are arbitrary vectors of suitable dimension.
The variational formula for a non self-adjoint operator is

F = (®*L®) (13)

where @ is the adjoint variable of @ [12]. The integral over
the area is used as the inner product for the case of the
trarisverse wave equations. Equation (13) is shown to be a
variational formula for the operator of (9) by considering
a perturbation

F + 0F = f (@ + SOYL(® + D) dS. (14)

s
Equation (13) is subtracted, second-order terms are
neglected, and the Laplacian is expanded using integration

by parts twice .

OoF = f OD°LD dS + f S® ViIP* dS
s 5

+ fﬁ (O°VI6D — 6@ VID?) dr

+ »? f SOMTD® ds. (15)
S
This may be written
OF = {(6®°LD®)> + {(ODL*®*) + B(®*5®) (16)

where the last term contains the contour integral boundary
terms and where the identity was used (L adjoint) =
(L transpose) or L* = LT for real L.

The functional equation (13) is variational if and only if
the variation resulting from a perturbation of the variables

8F = 0. an
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Consequently, from (16) it can be seen that (17) is satisfied
if L® = 0, which is the original (8), and

LD = 0 (18)

which is the adjoint of this equation and in addition the
boundary term

B(®°,60) = 0. (19)

Equation (19) requires that Dirichlet, Neumann, or mixed
boundary conditions are satisfied. The variational formula
in the case of the wave equations (6) is now written using (13)

F = f O*V3D dS + f @*®°M® 4S. (20)
S S

Equation (20) is expanded using Green’s theorem because
the Laplacian of a linear function (5) vanishes, which is not
a realistic approximation to the Laplacian of the actual field

F = —f vVd* - Vo dSs +§®“'@dr
s . on

+ f o’*®°M® dS. 21
N

Mazxwell’s equations, in normalized form and split into real

and imaginary parts, are used to express the derivatives

which are discontinuous at the interface between different

media, 0®/on, in terms of continuous derivatives 0@/t

@ _p® @2)
on ot
where
OE, [0t 0 0 -0 o
o® | 0E, /o< _|(o0 o0 -9 -¢
% |omee| PR - 0 o @
0H." |0t R’ R 0 0
and
0 = (/w)e + (y/w)’s”
le,|?
" ? ! # (24a)
Q/r — (}’/a’) & — (‘}’/(l)) 8,’
AR
R = WleYu' + Gfw)p”
lil?
(24b)
r = 0oy’ — Gloyu"
|t
Hence, (21) may be written
F= —f VO VO dS + ff op 22 4
s . ot
+ f 0*®°M® ds. (25
N

The Rayleigh-Ritz procedure is followed. Approximation
functions are substituted for the functions @ and ®¢ in the
functional equation (25), which is then extremized by

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1977

differentiation with respect to the unknown coefficients.
The approximation functions are obtained by splitting (5)
into real and imaginary parts, and further approximation
functions are defined for the adjoint variables; for example,

n

Y a/“$(x.).

i=1

E'"" = (26)

The summation limits are assumed to be i = 1 to n for the
remainder of this paper, unless otherwise stated.
The first term of (25) becomes

F, = — f [(Ea/*Vé)(Ea/ Véy)
N
+ (Ea/Vé)(Za;" Ve,
+ (Sb/*Vo)(Eb/ V)
+ (Sb/* V)b V)] dS. @7

Differentiation with respect to the coefficients a;’,a;",b;,b;",
a;'%a"%b;/%b;,"% and defining a matrix
s

which may be precomputed for a given triangle shape [21],

produces
OF/ox*] _ _[s;d O x
[aF1 /6x] = [ 0 (D7 |x @9
where
x = [ai’aai”’bi,’bi”]r xa — [ai/a’aiua’bi/a’bina]T' (30)

In a similar manner, the second term of (25) becomes
OF,[0x"] _ [Pwy 0 x
0Fjox} | 0 (PwyT x°

after differentiating with respect to the coefficients and
defining a matrix

(1)

Wy = 3@ ¢, % e (32)
R
which may be precomputed [22].
Similarly, the third term of (25), using (7), becomes
OFs[0x*] 5 [Mt; 0 x
[0F3/6x] =" 0" | | D

after differentiating with respect to the coefficients and
defining another precomputable matrix [21]

. = b, dS. 34
t f b6 (34)

The combination of the three differentiated terms (29),
(31), and (33), corresponding to the three terms in (25), are
set to zero in order to extremize the variational functional F

1% ) [+ 150 ] [

= [Aff ony) ] 09
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The lower matrix equation of (35) is the adjoint of the
upper equation, and consequently has the same eigenvalues
and adjoint eigenvectors. Thus only one equation need be
solved

Ls; — (36)

A matrix eigenvalue equation for a cross section contain-
ing k triangles may be constructed using (36), because the
approximation function (5) for each triangle is zero in all
other triangles. S,W,T,a’,a",b',b" are used for the matrices
where previously only the matrix elements were used and
the subscripts now refer to the matrix or vector triangle
number.

Pw;]x = 0*Mt;x.
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magnetic-field values of ' and b” are set to zero. Con-
sequently, some rows and their corresponding columns are
omitted.

In the cases that the resulting eigenvalues w? are real,
they provide the frequencies of possible modes of propaga-
tion and the eigenvectors determine the complex electric
and magnetic fields at the triangle nodes in the cross section.

The matrices involving Q' W couple the real parts of the
electric and magnetic field and are zero for TM and TE
modes, and nonzero only for hybrid modes. The matrices
involving double-prime quantities are zero when there are
no dissipative materials present. The matrices involving

| ’ | " - ~
~~ | : -0, Z I 0."W a;
S~ : 0 | S~o i Seo .
N | ~ ! ~ " .I
~S : ! ~O W: o'W a,
————————————— -l'————-—————-—-——-—-—r————————-—-————-:-—-—————————————~ ——
1 1
‘ Sl I _QIIIW | *‘Ql,’z a1”
i S | > | ~No
0 I >~ | ~~ | ~
| \\\S | ~ nwl -0 W ”
I ko —O'W O a,
_____________ L_._.____..,_____.=.__._.._______.__Jr_..__________._ P
|
Rllw : _RIIIW : s]\ : bll
~ .
\\\ | \\\ | \\\ { 0 :
~a | ~ | ~ :
Rk,W= ""‘Rk”W| \\Sk : bkl
I
————————————— T—“‘—————""———T““““——_"———"‘—T—"_“—————_“"‘* -
" ' | ”
R"W_ 1 Ry A | l AR b,
S~ o N | 0 | o :
\\\ ) : \\\ } : \\\ :”
’
I RS W] R, | s Lal
- 7 " l - [
ml\T\l | —m" Ty ! I i ay
. Lo 0 0 ;
’ ~.. 0 '
\\mk Tk: —my Tk : : ak
_____________ b it I I -
| | I
my" T, | my' Ty | | a,”
\\\ | \\\ A : O : 0 :
N ”T { N /T 1 | ”
my Ay my Iy | a
= @ [-=mmmm s frm T it it -—=1. 37D
4 " ?
: Lmy Ty L —m"T; b,
0 I 0 | ~ ! S~ :
| ! = > ! > ” 'l
: : m,‘ Tk l ""mk Tk bk
_____________ ) Ehmt e A D -0
| | "T | 'T b,
: | My by : my ~~ 1
| ~ :
0 lI 0 i \\\\ ” : \\\; ‘o
L | } my, Tk| my' T, | | b

The a and b vectors in (37) form a vector of length 3 x 4 x &
representing the unknown complex electric- and magnetic-
field values at each vertex of thé k triangles. When the
triangles are brought together, many of these unknowns
refer to the same points and must therefore be equal. This
continuity condition is accomplished by initially assigning
numbers to each node of the cross section rather than each
vertex of each triangle. The submatrices in (37) are then
entered into the correct positions of the final matrix directly.

At external-boundary node points, where E, = 0 or
there are lines of symmetry for the tangential electric field,
the appropriate electric-field values of @’ and a” are set to
zero. Similarly, where H, = 0, or there are lines of sym-
metry for the tgngential magnetic field, the appropriate

Q"W are nonzero only for hybrid modes in the presence of
dissipative materials.

The result obtained is shown in [13] to be identical to
that obtained by means of the method of weighted residuals

[12], [14}.

III. NUMERICAL PROCEDURE

The waveguide cross section is divided into triangular
regions at whose vertices the complex electric and magnetic
fields are determined. Consequently, a finer net is selected
where one of these four functions is expected to vary
rapidly. If too few triangles are used, or if they are positioned
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badly, or truncation of the surface wave decaying to in-
finity is too great, the eigenvalues will be less accurate.

A program for the solution of the general matrix eigen-
value equation 4x = ABx called the QZ algorithm [23]
was used to compute the complex eigenvalues 4 and com-
plex eigenvectors x. The frequencies were determined from
w? = A, when 1 was real.

The smallest positive eigenvalue for an arbitrary selection
of afw and B/w is generally complex because the matrix is
unsymmetrical. However, the frequency was assumed to
be real, and it is therefore necessary to iterate on «/w or
Blo until the imaginary part of w becomes negligible [13].
Similarly, the imaginary part of the dielectric, which de-
pends on , will need to be iterated until ¢,” = o,/w for a
medium of relative conductivity o,.

The numerical process involves discretization of a con-
tinuous field. Consequently, spurious modes are generated
which are not realizable physical modes. In addition, some
modes are lost, such as the higher order modes, whose field
variations can no longer be adequately represented by a
limited number of triangles. Neither of these features pre-
sent a problem because the lowest order modes are the ones
of interest and it was found that these are easily distin-
guished from the spurious modes which exhibit obvious
nonphysical characteristics [13].

The variation of the electromagnetic field with time is
provided by the fact that the electric and magnetic field are
complex. For example, the electric field at a node, E =
a + bj produces

Et)

I

Re [(a + Bj)e’®]
= g cos wt — b sin wt
= \Ja* + b2 cos (0t + tan~! (bja)).  (38)

Hence, at ot = 0, £(t) = a; at wt = =/2, () = —b; and
at ot = —tan~! (b/a), £(t) = Va* + b>. The knowledge
of the field variation with time enables damped transverse-
wave motion to be detected.

IV. VERIFICATION EXAMPLES

In order to verify the accuracy of the previously men-
tioned numerical procedure, several relatively simple wave-
guide structures were investigated for which some analytical
results may be calculated for comparison [1], [2], [24],
[25]. These results are described in detail in [14]; conse-
quently, only a brief review is presented here. As suc-
cessively more complex guides were considered, more
submatrices in (37) became nonzero.

The complex propagation constants and fields were de-
termined as a function of frequency for a hollow circular
waveguide filled with dissipative material in order to verify
the iteration process for finding real frequencies. Typically,
errors of less than 1 percent were obtained for specified
propagation constants, a TMy,; mode, and a 15 triangle
approximation [14].

Hybrid modes may propagate along a dielectric rod and
the fields decay to infinity transversely. The TM,;, TE,,,
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and HE,, mode propagation constants showed close agree-
ment between the numerical and analytical computations
[12] for a wide range of frequencies [14]. The numerical
method was also shown to be capable of providing good
results for a dielectric-coated conductor [14], [24].

A rod having both dielectric and conductive properties
was investigated. Analytical methods enable solutions to be
obtained for the lowest order modes and limited frequency
ranges when the losses are small (perturbation methods)
[1] or when the conductivity is high [2], [25]. In contrast,
the numerical method developed here can handle all in-
between cases. The numerical results show that, as the con-
ductivity is increased, surface-wave propagation as a result
of the dissipative surface phenomena increases while that
due to internal reflection from side to side in the dielectric
becomes less significant [14]. Both conducting rods in
which the diameter is much less than the skin depth [2] and
in which the diameter is much greater than the skin depth
[25] were considered. In the latter case, surface-wave
propagation is entirely due to the dissipative -property on
one side of the surface interface. In the former case, because
of the internal reflection phenomena, the surface wave
decays more rapidly in the transverse direction and differs
more substantially from a plane wave. Good agreement
was obtained between the numerical and analytical tech-
niques even though the field decays to 1/e of the surface
value in millionths of a meter inside the conductor and
meters outside the conductor [14].

V. APPLICATION TO RAILROAD TRACK

A. Approach

A method is proposed in which the track, used for steer-
ing a rapid-transit vehicle, is adapted for use as a surface
waveguide [15]. Signals transmitted ahead of a vehicle are
steered by the track and reflected from obstacles or vehicles
ahead. In order to evaluate this proposal, the complex
propagation constant for the lowest order mode and the
associated electromagnetic fields are computed for a given
track structure. The railroad rail was selected because it is
the most common form of track guiding system and is still
popular on new systems, such as the BART system in San
Francisco and the subway in Washington, DC.

The surface wave is required to cling fairly closely to the
rail in order not to strike objects alongside the track. Con-
sequently, it was decided to modify the rail by the addition
of a strip of dielectric material, as in Fig. 1. The surface
wave is enhanced because the wave is partially trapped
inside the dielectric by repeated internal reflection as the
wave propagates. The lowest order mode which propagates
is similar to the HE;; mode on a rod, the arrangement
being similar to a dielectric image line.

A similar approach is possible for most track guiding
systems because there is generally a steel guideway even
when rubber-tired vehicles are used.

The complex propagation constant for the HE;; mode
is computed to determine the phase distortion and attenua-
tion, and the complex fields are determined for possible use
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Fig. 1. Rail augmented with strip of Dielectric material resting on

ground.

in antenna and reflector designs. The results, including those
for a water saturated track, indicate that the method pro-
posed warrants further investigation in the search for a
more economic and efficient headway control and collision
avoidance system.

B. Model

The surface waveguide characteristics of a rail modified
by a dielectric strip are influenced by the properties of the
four regions present: the rail, the dielectric strip, the air,
and the ground.

The dielectric material chosen should have a high value
of relative permittivity, a small loss tangent, and a low
price. A commonly available material, polystyrene, was
used for the analysis. There may be other more suitable
materials which would produce better results. The poly-
styrene properties assumed were relative permittivity ¢, =
2.56 and loss tangent tan § = 0.00033 in the range of
frequencies considered [26]. .

The rail properties assumed were conductivity o =
0.6 x 10® mho/m, relative permittivity ¢, = 1, and relative
permeability p, = 10, the latter value being estimated from
values at lower frequencies. It was expected that the loss in
the rail would be small relative to the loss in the ground and
the dielectric because of the high rail conductivity; there-
fore, initially this loss was neglected. A perturbation method
was used later, and it was found that the loss due to the
rail was less than 2 percent of that due to the ground and
the dielectric together [13].

The properties of the materials directly beneath the rail
are harder to determine. Normally, the rails rest on wooden
sleepers and these rest on a ballast material made of gravel.
The part of the wave below the rail is partially reflected by
the sleepers.

The problem of periodic discontinuities is discussed by
Hu [27] and is also relevant to the effect of gaps in non-
welded rails. The reflections caused by repetitive discon-
tinuities is shown to have a compounded effect and is not
just linearly additive. It was decided that a suitable model,
expected to give the worst case results, would be to consider
the rail resting directly on the ground. Electrical properties
at 3 x 10° Hz for different ground materials are shown in
Table I [26]: the sandy-dry and distilled-water cases were
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TABLE 1
GROUND MATERIAL PROPERTIES
€, TAN &
SANDY DRY 25 0.0062
LOAMY DRY 2.44 0.0011
SNOW 1.2 0.00029
DISTILLED WATER 76.7 0.157

considered in order to illustrate the procedure and to
observe the effect of a large variation in the values of the
parameters.

The air was considered to have a relative permittivity
g, = 1, a relative permeability u, = 1, and zero conduc-
tivity. The effect of fog and rain are not significant in the
range of frequencies considered [28].

Symmetry of the field about a vertical plane along the
center of the rail was assumed; consequently, only half the
rail cross-section is considered. In practice, the dielectric
might be placed on one side of the rail and the results would
be slightly different. The manner in which the half cross-
section is subdivided into triangles is shown in Fig. 2. The
radial extent of the triangles was chosen so that a sufficient
part of the field would be in the air and available for
coupling with the vehicle and at the same time the field
would not be extended too far into the lossy ground. A
smaller and larger triangle spread were used for higher and
lower frequencies, respectively. A triangle spread selected
for a given frequency will result in increasingly truncated
field representation as the frequency is lowered and in-
creasingly poor triangle utilization as the frequency is raised.

C. Results

The numerical method was applied to the augmented rail
model and the results obtained for the normalized phase
constant versus normalized frequency are shown in Fig. 3.
Examination of the HE,,-type field patterns for three
layouts showed that a particular layout is only valid over a
small range of frequencies. The true curve is expected to lie
between the curves shown. The group velocity dw/df, which
determines the phase distortion of the signal, is seen to be
approximately constant over the range of frequencies con-
sidered. Consequently, phase distortion is expected to be
minimal at these frequencies.

The normalized attenuation constant divided by normal-
ized frequency versus normalized frequency, Fig. 4, is
extrapolated from the three dotted curves and agrees with
the predicted behavior. At very high frequencies, the wave
withdraws into the dielectric material and approaches a
plane wave with a ratio of normalized propagation constant
to normalized frequency of y/w = 1.6 + j0.000264. At the
lower frequencies, the wave spreads farther from the rail,
which simplifies coupling with the vehicle, but causes an
increase in attenuation because more of the field enters the
ground.

The normalized attenuation constant was determined for
a configuration in which the ground is considered lossless



388

INCHES
o

\
avi
avi

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1977

NOTE: RAIL 1S ON ITS SIDE
N AND 1S CROSS HATCHED,
~ DIELECTRIC IS DOTTED.

4 [ 8 10 12

INCHES
Fig. 2. Layout of triangles for application of finite-element method.
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Fig. 3. Phase constant versus frequency for an augmented rail.

(curve 4 of Fig. 4) in order to determine the apportionment
of the attenuation between that caused by dissipation in the
dielectric and that caused by dissipation in the ground. The
attenuation caused by dissipation in the dielectric decreases
as the frequency is lowered. At normalized frequencies
below o = 0.68, the loss caused by the ground becomes
dominant, while above this frequency the dielectric loss
becomes significant.

Figs. 5 and 6 show, superimposed on the cross section of
a rail, the real part of the z component of the electric and
magnetic fields at a frequency 1.246 GHz (0w = 0.659) near
the center of the range considered. The imaginary part of
the electric and magnetic fields represent the electric and
magnetic fields at a time wt = =/2 later than the real part
and are similar in appearance, having a smaller magnitude
because the attenuation involved is small. A ratio of
normalized propagation constant to normalized frequency
of y/jo = Blo + jajw = 1.145 + j0.000306 was used. At
this ratio of propagation constant to frequency the imag-
inary part of the eigenvalue is small (0.000054) relative to the
value when either «/w or f/w are changed only slightly. The
field patterns are seen to be similar to those for an HE,,
model on a lossy dielectric rod [14]. The field extends into

0.0015—
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/
/
/
§
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0.0 I ] | i
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Fig. 4. Attenuation constant divided by frequency versus frequency
for an augmented rail.

the ground and the transverse distance from the surface of
the dielectric to the point where the z component of the
electric field has decayed to 1/e of the value at the surface,
is about 0.67 in. The z component of the magnetic field in
the direction of propagation has a maximum value along the
beveled edge of the dielectric. The transverse magnetic and
electric fields are obtainable from Maxwell’s equations

h, = ]iﬂz Vi, =12 @, x Ve (39)
and
e,= -8 ve. +J°"" @, x V) (40)

k2

C

where h, and e, are the transverse components of the mag-
netic and electric fields, 4, and e, are the z components of
the magnetic and electric fields, k. is the transverse prop-
agation constant, § is the phase constant, ¢ and p are the
permittivity and the permeability, and &, is the unit vector
in the z direction. For the HE,; mode on a stripline, con-
sisting of a semicircular dielectric rod attached to a con-
ducting plane, in the dielectric the transverse magnetic field
is approximately parallel to the plane and the transverse
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Fig. 6. Real part of magnetic field for an augmented rail at 1.246 GHz.

electric field is approximately normal to the plane. Applica-
tion of (39) and (40) to Figs. 5 and 6 indicates that the
transverse-field patterns follow an approximately similar
shape to theé previous case, if the rail contours and dielectric
shape are allowed for.

Figs. 7 and 8 show, superimposed on the cross section of
a rail, the real parts of the z component of the electric and
magnetic fields for a frequency 0.94 GHz (w = 0.5) near

the low end of the range of frequencies considered. A ratio
of propagation constant to frequency of y/w = f/w +
jajw = 1.07 + j0.00147 was used to produce these figures.
At this ratio of propagation constant to frequency, the
imaginary part of the eigenvalue w? is small relative to the
values when either o/w or B/w are changed only slightly.
The field is seen to spread much further from the rail, but is
otherwise similar to the higher frequency field previously
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considered. The transverse distance from the surface of the
dielectric to the point where the z component of the electric
field has decayed to 1/e of the value at the surface is about
2.67 in as compared to 0.67 in for the midfrequency.

Figs. 9 and 10 show the field in the case where the rail is
resting on rain water. The ratio of normalized attenuation
to normalized frequency is a/w = 0.00014 for f/w = 1.14,
which is less than the case for dry sandy soil, o/ =

0.000302. The reason may be explained by observing that,
in Fig. 9, the field is largely expelled from the ground. The
phase constant remains unchanged.

VI. CONCLUSION

A numerical procedure was developed, using the
Rayleigh—Ritz variational and finite-element methods, for
determining the complex propagation constants and com-
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plex electromagnetic fields for the lowest order modes for
electromagnetic waves propagating along a closed or surface
waveguide. A review was presented of the results obtained
in verifying this method. A railroad rail modified by the
addition of a strip of dielectric material was then investi-
gated as a waveguide, assuming typical material properties
for the rail, ground, dielectric, and air. It was shown that
waves of approximately 1.3 GHz may be expected to

propagate a distance of 155 m before falling to 1/e of their
amplitude at the transmitter. Water saturating the track
was shown to have only a minor effect. The z component
of the electric and magnetic fields was plotted for two fre-
quencies and for both dry and water-saturated ground. The
field patterns show the nature of the surface wave obtained
and enable the future construction of efficient antennas for
coupling into the waveguide.
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The results of analyzing the railroad track as a lossy
waveguide illustrate the usefulness of the numerical method
developed. In addition, the proposal to use the track as a
waveguide was shown to warrant further investigation as a
viable alternative for collision avoidance or headway con-
trol in future rapid-transit systems.
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Oxford:

Aperture Coupling Between Microstrip and
Resonant Cavities

DAVID S. JAMES, MeEMBER, 1IEEE, GUY R. PAINCHAUD, MEMBER, IEEE, AND WOLFGANG J. R. HOEFER,
MEMBER, IEEE ‘ :

Abstract—This paper presents a simple analysis for the coupling
between microstrip and a cavity through an aperture located in the
substrate ground plane. The analysis is based on Wheeler’s equivalent-
energy concept for small-hole coupling and an approximate parallel-plate
waveguide model for the microstrip. The theory appears adequate for
most design purposes, and has been used successfully in the design of
stabilizing cavities for experimental 12-GHz low-noise FET oscillators.

1. INTRODUCTION

HE PURPOSE of this paper is to present an analysis
and experimental data on the performance of a novel
microstrip-to-cavity transition, so that high Q cavities can
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be made compatible with existing MIC techniques. Previous
authors [1]-[5] have described empirically designed
microstrip and stripline-to-waveguide transitions; how-
ever, with the exception of [4], none of these papers describe
coupling to a resonant cavity.

The transition stundied is shown in Fig. 1. The ground
plane of the microstrip substrate forms one of the cavity
end plates. In particular, we have investigated coupling to
cylindrical cavities resonating in the TE,,, mode. Coupling
is by means of an aperture located in the ground plane at
the point of maximum radial H-field in the cavity. The
microstrip line terminates in an open circuit 31,/4 beyond
the aperture. This length of line maximizes the coupling
through the aperture [6]-[8]. This configuration is quite
practical, as the cavity can be machined into the substrate
holder.

Unfilled cavities can readily yield values of unloaded
0(Q,) of at least 25 000. This value is much greater than
that of both planar resonators (@, < 500) [9] and “open”



